Total Pressure Vapor-Liquid Equilibrium Data for Binary Systems of Diethyl Ether with Acetone, Acetonitrile, and Methanol

Rakesh Srivastava, Govindarajan Natarajan, and Buford D. Smith*

Thermodynamic Research Laboratory, Washington University, St. Louis, Missouri 63130

Total pressure vapor-liquid equilibrium (VLE) data are reported at 298, 338, and 388 K for each of the three diethyl ether binaries with acetone, acetonitrile, and methanol. The Mixon-Gumowski-Carpenter and Barker methods were used to reduce the experimental PTx data. The Mixon et al. results were found to be better and are reported. The Barker data reduction method was tested for six G^E correlations; the results are shown graphically for the correlation for which the best results were obtained. The Peng-Robinson equation of state was used to estimate the vapor-phase fugacity coefficients.

Introduction

The data for the three systems reported in this paper are part of the continuing effort to expand the vapor-liquid equilibrium data base. This effort was undertaken to fill the existing gaps

Table I. Chemicals Used

component	vendor	purity, %
diethyl ether	Burdick and Jackson	99.9
acetone	Burdick and Jackson	99.9+
acetonitrile	Burdick and Jackson	99.9+
methanol	Fisher Scientific	99.9

Table II. Experimental P vs. x_1 Values for the Diethyl Ether (1) + Acetone (2) System

	298.06 K			338.19	к		388.30	388.30 K	
	Ρ,	KPA		Ρ,	КРА		Р, КРА		
X 1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	
0.0 0.0320 0.0716 0.1341 0.2040 0.3042 0.4016 0.4984 0.6007 0.4984 0.6007 0.6984 0.7927 0.8610 0.9150 0.9150 0.9538 1.0000	30.68 33.95 37.68 42.81 47.63 53.23 57.67 61.21 64.36 66.87 68.88 70.02 70.73 71.08 71.25	30.68 33.96 37.67 42.80 47.63 53.25 57.64 61.22 64.36 66.86 66.86 68.87 70.03 70.73 71.07 71.25	0.0 0.0317 0.0711 0.1335 0.2034 0.3033 0.4008 0.4972 0.6000 0.6978 0.7925 0.8609 0.9150 0.9538 1.0000	136.23 146.35 157.94 174.30 190.12 208.94 223.66 235.75 246.50 254.78 261.16 264.65 266.50 267.21	136.23 146.35 157.94 174.29 190.14 208.90 223.70 235.75 246.46 254.81 261.18 264.62 266.51 267.24 267.21	0.0 0.0316 0.0707 0.1323 0.2028 0.3026 0.4964 0.5993 0.6972 0.7922 0.8607 0.9149 0.9539 1.0000	539.9 565.5 597.3 644.0 689.2 744.2 784.6 821.9 854.8 879.8 854.8 879.8 854.8 879.8 854.6 907.0 912.4 909.5	539.9 565.7 597.2 643.7 689.8 743.3 785.7 854.5 854.5 880.1 898.5 907.6 911.9 912.5 909.5	

Table III. Experimental P vs. x_1 Values for the Diethyl Ether (1) + Acetonitrile (2) System

	298.14 K			338.16	ĸ		388.17	х
	P, 1	KPA		Ρ,		P, KPA		
X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH
0.0	11.837	11.834	0.0	58.63	58.60	0.0	261.75	262.37
0.0430	20.705	20.717	0.0428	87.37	87.45	0.0418	345.1	342.8
0.0815	27.220	27.201	0.0814	109.11	109.04	0.0811	402.7	404.8
0.1409	35.07	35.09	0.1404	135.74	135.70	0.1395	479.7	479.9
0.2068	41.72	41.71	0.2066	158.90	159.00	0.2053	551.6	550.5
0.3006	48.47	48.47	0.2997	183.50	183.41	0.2986	631.4	631.6
0.3962	53.43	53.44	0.3949	201.91	202.00	0.3935	694.5	695.5
0.4981	57.49	57.47	0.4972	217.65	217.54	0.4958	750.1	748.4
0.5965	60.70	60.71	0.5955	230.02	230.14	0.5945	787.0	788.7
0.6971	63.66	63.66	0.6964	241.52	241.46	0.6954	826.0	825.1
0.7857	66.11	66.10	0.7851	250.42	250.43	0.7845	856.8	856.5
0.8511	67.87	67.87	0.8508	256.59	256.60	0.8504	876.9	877.4
0.9142	69.54	69.55	0.9140	262.05	262.08	0.9139	893.0	893.3
0.9502	70.45	70.44	0.9501	264.76	264.73	0.9500	899.9	899.5
1.0000	71.50	71.50	1.0000	267.43	267.43	1.0000	903.4	903.5

Table IV. Experimental P vs. x_1 Values for the Diethyl Ether (1) + Methanol (2) System

	298.16 K			338.17	к		388.15 K			
	P, 1	KPA		Ρ,	КРА		P	P, KPA		
X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH		
0.0	16.977	16.975	0.0	103.52	103.53	0.0	554.1	553.7		
0.0381	24.862	24.871	0.0378	129.55	129.55	0.0376	625.5	626.7		
0.0735	31.07	31.06	0.0732	149.97	149.94	0.0730	684.8	684.0		
0.1293	38.97	38.97	0.1289	175.76	175.82	0.1284	756.8	755.7		
0.1919	45.70	45.71	0.1915	197.84	197.83	0.1910	815.4	816.9		
0.2772	52.35	52.31	0.2764	219.54	219.43	0.2750	876.4	876.2		
0.3752	57.64	57.69	0.3744	237.01	237.19	0.3736	927.3	927.0		
0.4723	61.56	61.52	0.4715	250.01	249.89	0.4710	962.7	962.1		
0.5719	64.54	64.55	0.5713	259.69	259.71	0.5781	984.7	986.5		
0.6690	66.93	66.93	0.6686	266.92	266.95	0.6689	998.2	996.5		
0.7578	68.81	68.80	0.7576	271.83	271.80	0.7582	995.9	996.8		
0.8350	70.22	70.22	0.8351	274.20	274.19	0.8358	986.6	986.4		
0.8946	71.13	71.13	0.8947	274.29	274.34	0.8955	969.1	969.0		
0.9418	71.58	71.57	0.9420	272.63	272.59	0.9426	946.7	946.9		
1.0000	71.53	71.53	1.0000	267.10	267.11	1.0000	906.5	906.5		

Table V. Calculated Data for the Diethyl Ether (1) + Acetone (2) System at 298.06 K

LIQUID	MOLAR VOLU	UMES, ML/M	IOL: CON	IPONENT	1 = 104.72	COMPON	ENT 2 =	74.04
	P, 1	FUGA COEFFI	ACITY ICIENTS		ACTI COEFFI	VITY CIENTS	GE	
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.350 0.400 0.550 0.550 0.600 0.550 0.600 0.750 0.750 0.750 0.800 0.850	30.677 35.698 40.109 43.979 47.380 50.378 53.040 55.428 57.577 59.517 61.276 62.880 64.343 65.678 66.899 68.011 69.004 69.859	30.677 35.700 40.111 43.982 50.380 53.042 55.429 57.578 59.518 61.276 62.879 64.342 65.678 66.898 66.898 66.003 69.003 69.003	0.9884 0.9865 0.9848 0.9833 0.9820 0.9799 0.9799 0.9774 0.9762 0.97762 0.9775 0.9775 0.9747 0.9742 0.9742 0.9735	0.9885 0.9867 0.9850 0.9836 0.9823 0.9812 0.9793 0.9775 0.9775 0.9765 0.9755 0.9750 0.9750 0.9743 0.9739	0.0 0.1808 0.3048 0.3956 0.4654 0.5211 0.5674 0.6070 0.6419 0.6731 0.7018 0.7287 0.7544 0.7754 0.8306 0.8575 0.8863	1.9482 1.8393 1.7391 1.6472 1.5632 1.4872 1.4190 1.3585 1.3044 1.2558 1.2122 1.1734 1.1081 1.0814 1.0814 1.0390 1.0229	1.0000 1.0015 1.0061 1.0252 1.0402 1.0583 1.1080 1.1396 1.2197 1.2703 1.3986 1.4798 1.3986 1.4798 1.5778 1.6991	$\begin{array}{c} 0.0\\ 78.99\\ 150.59\\ 214.59\\ 270.81\\ 319.10\\ 359.39\\ 391.66\\ 415.91\\ 432.06\\ 439.94\\ 439.42\\ 430.29\\ 412.29\\ 430.22\\ 9385.12\\ 348.48\\ 301.93\\ 244.72\\ \end{array}$
0.900 0.950 1.000	70.557 71.044 71.252	70.556 71.043 71.252	0.9733 0.9731 0.9730	0.9737 0.9735 0.9734	0.9182 0.9552 1.0000	1.0106 1.0026 1.0000	1.8499 2.0409 2.2569	175.96 94.54 0.0

Table VI. Calculated Data for the Diethyl Ether (1) + Acetone (2) System at 338.19 K

LIQUID	MOLAR VO	LUMES, ML/I	MOL: CO	1PONENT	1 = 112.49	COMPON	ENT 2 =	78.58
	Ρ,	KPA	FUG COEFF	ACITY ICIENTS		ACTI COEFFI	VITY CIENTS	GE
X 1	EXPTL	CALC	1	2	Yl	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.350 0.400 0.450 0.500 0.500 0.600	136.233 151.848 165.792 178.257 189.413 199.395 208.336 216.365 223.592 230.124 236.065 241.503 246.460	136.233 151.853 165.799 178.265 189.421 208.341 216.369 223.596 230.126 236.067 241.503 246.461 550.947	0.9635 0.9593 0.9523 0.9493 0.9443 0.9443 0.94421 0.94421 0.94420 0.9385 0.9385 0.9369 0.9355 0.9355 0.9342	0.9639 0.9597 0.9560 0.9527 0.9498 0.9427 0.9448 0.9427 0.9408 0.9391 0.9375 0.9361 0.9348 0.9348 0.9348	0.0 0.1426 0.2499 0.3342 0.4027 0.4598 0.5087 0.5514 0.5897 0.6246 0.6573 0.6886 0.7189	1.7685 1.6817 1.6023 1.5298 1.4637 1.4030 1.3475 1.2969 1.2511 1.2098 1.1732 1.1410 1.1126	1.0000 1.0013 1.0052 1.0119 1.0214 1.0341 1.0501 1.0696 1.0929 1.1204 1.1520 1.1880 1.2292 1.2769	0.0 76.54 145.77 207.60 261.96 308.72 347.72 378.81 401.88 416.79 423.47 421.92 412.10 203.82
0.700 0.750 0.800 0.850 0.900 0.950 1.000	254.972 258.535 261.605 264.138 266.074 267.196 267.212	254.971 258.534 261.604 264.137 266.074 267.195 267.212	0.9330 0.9319 0.9309 0.9301 0.9295 0.9289 0.9286 0.9286	0.9325 0.9316 0.9308 0.9301 0.9296 0.9293 0.9293	0.7785 0.8089 0.8405 0.8743 0.9113 0.9522 1.0000	1.0875 1.0655 1.0465 1.0305 1.0178 1.0086 1.0022 1.0000	1.2769 1.3324 1.3970 1.4733 1.5623 1.6653 1.8017 1.9663	393.84 366.88 330.90 285.52 230.28 165.04 88.77 0.0

in the UNIFAC parameter table. The measurements reported in this paper will provide six group interaction parameters with diethyl ether (CH₂O group) as one of the components.

0021-9568/86/1731-0089\$01.50/0 © 1986 American Chemical Society

Figure 1. Deviation from Raoult's law for the diethyl ether (1) + acetone (2) system. Ordinate values run from 0.0 to 120.0.

Figure 3. Deviations from Raoult's law for the diethyl ether (1) + methanol (2) system. Ordinate values run from 0.0 to 300.0.

Figure 2. Deviations from Raoult's law for the diethyl ether (1) + acetonitrile (1) system. Ordinate values run from 0.0 to 240.0.

Figure 4. Activity coefficients for the diethyl ether (1) + acetone (2) system. Curves from Barker results; points from Mixon et al. method.

Figure 5. Activity coefficients for the diethyl ether (1) + acetonitrile (2) system. Curves from Barker results; points from Mixon et al. method.

Figure 6. Activity coefficients for the diethyl ether (1) + methanol (2) system. Curves from Barker results; points from Mixon et al. method.

Table VII. Calculated Data for the Diethyl Ether (1) + Acetone (2) System at 388.30 K

LIQUID	MOLAR VOI	UMES, ML/	MOL: CO	MPONENT	1 = 126.83	COMPON	TENT 2 =	85.90
	Р,	FUGACITY P, KPA COEFFICIENTS			ACTI COEFFI	GE		
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.350 0.400 0.450 0.550 0.600 0.650 0.750 0.800 0.850	539.853 580.649 619.943 656.028 688.076 716.546 716.546 741.998 764.963 785.836 804.972 839.336 854.681 868.562 880.782 889.180 868.562 889.714 906.371	539.853 580.647 619.939 656.022 688.072 716.539 741.991 764.956 785.829 804.964 822.719 839.331 854.677 868.560 880.780 899.714 906.371	0.9033 0.8961 0.8891 0.8827 0.8771 0.8771 0.8771 0.8675 0.8599 0.8565 0.8599 0.8565 0.8533 0.8505 0.8478 0.8453 0.8432 0.8432 0.8438 0.8432	0.9033 0.8961 0.8891 0.8870 0.8770 0.8675 0.8634 0.8553 0.85531 0.8553 0.8475 0.84450 0.84450 0.84428 0.8410 0.8395 0.8395 0.8383	0.0 0.1083 0.2002 0.2768 0.3407 0.3955 0.4441 0.4882 0.5292 0.5682 0.6061 0.6436 0.6806 0.7169 0.7527 0.7884 0.8252 0.8642	1.5177 1.4978 1.4659 1.3604 1.2156 1.1785 1.1468 1.1204 1.0990 1.0806 1.0641 1.0488 1.0348 1.0229 1.0140	1.0000 1.0004 1.0023 1.0158 1.0278 1.0426 1.0601 1.0800 1.1223 1.1496 1.1761 1.2067 1.2437 1.2437 1.2438 1.3411 1.3968	0.0 66.36 129.80 188.18 239.35 282.35 316.92 361.18 371.38 374.17 370.12 359.65 342.71 318.90 287.50 247.93 200.12
0.950	912.551 909.458	912.549 909.458	0.8378 0.8376 0.8381	0.8375 0.8372 0.8377	0.9495 1.0000	1.0076 1.0021 1.0000	1.4619 1.5659 1.7026	144.56 78.91 0.0

Table VIII. Calculated Data for the Diethyl Ether (1) + Acetonitrile (2) System at 298.14 K

LIQUID	MOLAR VOL	UMES, ML/M	MOL: CO	MPONENT	1 = 104.72	COMPON	ENT 2 =	52.65
	P, 1	FUG. COEFF	ACITY ICIENTS		ACTIVITY COEFFICIENTS		GE	
X1	EXPTL	CALC	1	2	¥1	۱	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.300 0.450 0.450 0.450 0.550 0.650 0.700 0.750 0.700 0.750 0.880 0.900	11.834 21.986 29.897 36.117 41.106 45.132 48.433 51.223 53.614 55.692 57.543 59.241 60.821 60.821 62.311 63.737 65.124 66.487 67.840 69.182	11.834 21.986 29.898 36.118 41.107 45.133 48.434 51.224 55.692 57.543 59.240 60.821 62.311 63.737 65.123 66.486 67.840 69.182	0.9955 0.9917 0.9863 0.9844 0.9829 0.9817 0.9806 0.9797 0.9782 0.9776 0.9776 0.9776 0.97759 0.9759 0.97758 0.97748 0.9748	0.9947 0.9902 0.9867 0.9839 0.9785 0.9775 0.9762 0.9762 0.9753 0.9744 0.9730 0.9730 0.9730 0.9711 0.9711 0.9705 0.9699 0.9699	0.0 0.4846 0.6362 0.7102 0.7547 0.7844 0.8060 0.8228 0.8367 0.8484 0.8589 0.8687 0.8687 0.8782 0.8877 0.8782 0.8877 0.8974 0.9077 0.9193 0.9327 0.9490	3.4398 3.0440 2.7079 2.4283 2.1979 2.0031 1.8380 1.5805 1.4785 1.3156 1.2508 1.1948 1.1466 1.1054 1.0708 1.0708	1.0000 1.0031 1.0127 1.0286 1.0505 1.0792 1.1150 1.2093 1.2704 1.3428 1.4279 1.6503 1.7979 1.6503 1.9802 2.2100 2.5061 2.9022	0.0 145.36 275.11 389.23 488.18 572.24 641.51 696.21 736.56 762.55 774.14 771.25 753.78 603.68 609.68 528.79 429.73 311.02
0.950 1.000	70.435 71.501	70.434 71.501	0.9733 0.9729	0.9688 0.9683	0.9696	1.0059 1.0000	3.5151 4.4118	169.67 0.0

Table IX. Calculated Data for the Diethyl Ether (1) + Acetonitrile (2) System at 338.16 K

LIQUID	MOLAR VOL	LOMES, ML/M	IOL: CO	MPONENT	1 = 112.51	COMPON	ENT 2 =	55.68
	Ρ,	KPA	FUG. COEFF	ACITY ICIENTS		ACTI COEFFI	VITY CIENTS	GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.150 0.150 0.200 0.300 0.450 0.400 0.450 0.450 0.550 0.650 0.650	58.603 91.769 118.187 139.459 156.934 171.379 183.480 193.855 202.860 210.787 217.927 224.525 230.672 236.425 241.842	58.603 91.771 118.190 139.463 156.938 171.383 183.482 193.857 202.861 210.787 217.926 224.524 230.670 236.423 241.840	0.9844 0.9754 0.9684 0.9580 0.9580 0.9541 0.9481 0.9487 0.9481 0.9487 0.9481 0.9487 0.9480 0.9364 0.9383 0.9354	0.9813 0.9707 0.9623 0.9550 0.9501 0.9417 0.9385 0.9331 0.9309 0.9288 0.9288 0.9269 0.9251	0.0 0.3845 0.5389 0.6228 0.6762 0.7136 0.7416 0.7639 0.7825 0.7986 0.8132 0.8270 0.8403 0.8536 0.8536	3.1390 2.7916 2.4987 2.2561 2.0561 1.8868 1.7426 1.6153 1.4247 1.3468 1.2801 1.2226 1.1727 1.1296	1.0000 1.0030 1.0121 1.0269 1.0473 1.0737 1.1066 1.1461 1.1931 1.2487 1.3139 1.3897 1.4790 1.5853 1.7139	0.0 152.36 287.81 406.55 599.27 596.30 667.81 724.03 765.17 791.25 802.25 798.22 779.09 744.59 694.19
0.750 0.800 0.850	246.974 251.858 256.525	246.972 251.857 256.524	0.9340 0.9327 0.9315	0.9218 0.9203 0.9188	0.8814 0.8969 0.9149	1.0925 1.0612 1.0361	1.8717 2.0690 2.3174	627.15 542.53 439.14
0.900 0.950 1.000	260.934 264.719 267.434	260.933 264.718 267.434	0.9303 0.9293 0.9286	0.9174 0.9163 0.9155	0.9365 0.9632 1.0000	1.0174 1.0045 1.0000	2.6345 3.0906 3.6683	315.94 170.63 0.0

The apparatus and techniques for the experimental measurements have been described in detail in a previous paper by Maher and Smith (1) along with the defining equations for the activity coefficients and the standard states used.

Chemicals used

Table I lists the chemicals used and their stated purities. All chemicals were available in at least 99.9% purity. Activated

Table X. Calculated Data for the Diethyl Ether (1) + Acetonitrile (2) System at 388.17 K

LIQUID	MOLAR VOL	UMES, ML/N	10L: COM	IPONENT	1 = 126.34	COMPON	ENT 2 =	60.48
	Ρ,	KPA	FUGA COEFFI	CITY		ACTI COEFFI	VITY CIENTS	GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.300 0.450 0.450 0.550 0.600 0.550 0.600 0.750 0.750 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.750 0.800 0.800 0.750 0.800 0.800 0.750 0.800 0.700 0.8000 0.8000 0.8000 0.8000 0.8000	262.367 356.764 430.961 545.204 591.867 668.241 669.281 770.241 771.452 790.775 808.961 826.765 844.581 861.716 877.271 890.225	262.367 356.755 430.911 491.959 545.190 591.844 632.623 668.217 699.262 726.390 771.436 790.749 808.927 826.732 844.558 861.713 877.285	0.9530 0.9360 0.9228 0.9019 0.9024 0.8806 0.8806 0.8751 0.8661 0.8652 0.8557 0.8526 0.8526 0.8494 0.8549 0.8436	0.9428 0.9224 0.9064 0.8933 0.8819 0.8632 0.8556 0.8432 0.8381 0.8336 0.8336 0.8295 0.8257 0.8217 0.8181 0.8145 0.8113 0.8086	0.0 0.2821 0.4206 0.5060 0.5670 0.6133 0.6498 0.6796 0.7047 0.7264 0.7458 0.7638 0.7814 0.7814 0.8419 0.8667 0.8936 0.228	2.9122 2.5396 2.2474 2.0288 1.8661 1.7337 1.5214 1.5214 1.4337 1.2863 1.2863 1.2863 1.2252 1.1721 1.1275 1.0918 1.0442 1.0442 1.0276	1.0000 1.0035 1.0134 1.0282 1.0465 1.0669 1.1307 1.2212 1.2206 1.3515 1.4349 1.5308 1.6364 1.6365 2.0172 2.2212	0.0 161.08 300.03 418.74 520.04 605.65 676.14 731.60 771.87 796.63 805.47 797.96 675.21 602.44 515.48 414.26 297.09
0.950	899.456 903.460	899.479 903.460	0.8397 0.8390	0.8067	0.9565	1.0034 1.0000	2.5234 2.8681	159.70 0.0

Table XI. Calculated Data for the Diethyl Ether (1) + Methanol (2) System at 298.16 K

LIQUID	MOLAR VOLU	MES, ML/H	10L: COI	IPONENT	1 = 104.73	COMPON	ENT 2 =	44.89
	P, 1	FUGACITY P, KPA COEFFICIENTS			ACTI COEFFI	GE		
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.300 0.400 0.450 0.450 0.450 0.550 0.650 0.650 0.700 0.850 0.850 0.850 0.850 0.900	16.975 27.065 35.077 41.419 46.448 50.458 53.735 56.478 58.782 60.739 62.440 63.943 65.285 66.498 67.615 68.650 69.603 70.474 71.200	16.975 27.066 35.078 41.420 46.449 50.459 55.479 56.479 58.783 60.740 62.440 63.943 65.285 66.497 67.614 68.649 69.603 70.474 71.200 71.613	0.9938 0.9868 0.9868 0.9868 0.9869 0.9797 0.9777 0.9778 0.9778 0.9775 0.9753 0.9744 0.9753 0.9744 0.9740 0.9733 0.9731	0.9957 0.9932 0.9912 0.9887 0.9885 0.9868 0.9851 0.9851 0.9844 0.9838 0.9838 0.9838 0.9833 0.9831 0.9833 0.9834 0.9833 0.9833 0.9833 0.9833 0.9833 0.9833 0.9833 0.9833 0.9833 0.9834 0.9833 0.9833 0.9834 0.98440000000000000000000000000000000000	0.0 0.4009 0.5573 0.6400 0.6911 0.7258 0.7515 0.7718 0.7884 0.8025 0.8150 0.8256 0.8376 0.8485 0.8598 0.8720 0.8858 0.9026 0.9238 0.9254	3.4546 3.0922 2.7759 2.5028 2.2681 2.0666 1.8964 1.7524 1.6286 1.5213 1.4284 1.3478 1.4284 1.3478 1.4284 1.1629 1.1172 1.0783 1.0467 1.0218	1.0000 1.0029 1.0117 1.0268 1.0485 1.0772 1.1128 1.1559 1.2079 1.2704 1.3449 1.4341 1.5421 1.6741 1.8372 2.0427 2.3087 2.6580 3.1517 3.870	0.0 146.65 279.04 396.83 499.89 588.09 661.47 720.28 764.61 794.32 809.15 809.15 809.15 809.13 762.35 714.31 648.73 564.35 459.60 332.69 932.69 164.60 1
1.000	71.535	71.535	0.9729	0.9829	1.0000	1.0000	4.6016	0.0

Table XII. Calculated Data for Diethyl Ether (1) + Methanol (2) System at 338.17 K

LIQUID	MOLAR VOL	UMES, ML/N	IOL: COM	IPONENT	1 = 112.50	COMPON	ENT 2 =	47.76
	Ρ,	KPA	FUGA COEFFI	FUGACITY OEFFICIENTS			ACTIVITY COEFFICIENTS	
X1	EXPTL	CALC	1	2	¥ 1	1	2	J/MOL
0.0 0.050	103.525 136.966	103.525 136.970	0.9734 0.9641	0.9816 0.9758	0.0 0.2751	3.3152 2.9442	1.0000 1.0031	0.0 159.96
0.100	163.254 183.957	163.261 183.964	0.9569	0.9714	0.4156 0.5007	2.6283 2.3630	1.0123	302.72 428.26
0.200	200.379 213.500 224.262	200.386	0.9469	0.9652	0.5581 0.5996	2.1401 1.9517 1.7942	1.0496	536.84 628.60 703 82
0.350	233.312	233.316 240.933	0.9380	0.9599	0.6587	1.6627	1.1546	762.99 806.38
0.450 0.500	247.395 252.977	247.397 252.978	0.9342 0.9327	0.9577 0.9568	0.7013 0.7196	1.4531 1.3696	1.2631 1.3325	834.00 845.79
0.550	257.841 262.063	257.841 262.063	0.9313	0.9560	0.73 6 9 0.7537	1.2975	1.4147	841.68 821.38
0.650	265.717 268.868	265.717	0.9292	0.9549	0.7887	1.1803	1.6311	730.30
0.800	273.357	273.357	0.9271	0.9539	0.8300	1.0597	2.1748	567.38 456.16
0.900 0.950	274.238 272.076	274.238 272.075	0.9268 0.9274	0.9542 0.9548	0.8915 0.9374	1.0147 1.0035	2.7853 3.1916	324.92 172.39
1.000	267.111	267.111	0.9287	0.9561	1.0000	1.0000	3.6474	0.0

molecular sieves (4 Å) were put into the containers with the chemicals as they were received. The chemicals were vacuum distilled through a Vigreux column (25-mm o.d. and 470-mm long), before they were loaded into the VLE cells. The first and last portions of the distillate were discarded. The retained samples were backflushed with nitrogen and put into amber glass bottles for transfer to the loading operation. The initial purity of each chemical was verified chromatographically. Chemicals were handled in a nitrogen atmosphere to prevent contact with water vapor and oxygen. None of the compounds

Table XIII. Calculated Data for the Diethyl Ether (1) + Methanol (2) System at 388.15 K

LIQUID	MOLAR VOI	UMES, ML/M	IOL: CO	MPONENT	1 = 126.77	COMPON	ENT 2 =	52.34
	Ρ,	KPA	FUGACITY COEFFICIENTS			ACTI COEFFI	GE	
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.450 0.450 0.550 0.550 0.650 0.700 0.750 0.700	553.683 647.991 721.475 778.902 824.247 860.529 890.662 916.303 937.860 955.687 970.131 981.427 989.720 995.151 997.821 997.280 992.679	553.683 647.992 721.469 778.891 824.226 860.503 890.633 916.273 937.835 955.665 970.112 981.412 989.708 995.141 997.816 997.816 997.276	0.9058 0.8882 0.8746 0.8641 0.8558 0.8436 0.8389 0.8349 0.8349 0.8251 0.8251 0.82251 0.82251 0.8223 0.8232	0.9353 0.9245 0.9164 0.9053 0.9015 0.8984 0.8959 0.8938 0.8908 0.8908 0.8990 0.8893 0.8893 0.8893 0.8893 0.8893 0.8893	0.0 0.1749 0.2839 0.3588 0.4141 0.4574 0.5253 0.5553 0.5819 0.6067 0.6306 0.6336 0.6778 0.7064 0.7393 0.7757	3.0385 2.6755 2.3747 2.1288 1.9276 1.7620 1.6285 1.5201 1.4286 1.3496 1.2200 1.1667 1.1211 1.06610 1.0610	1.0000 1.0033 1.0130 1.0208 1.0785 1.1111 1.1486 1.1921 1.2433 1.3038 1.3756 1.4614 1.5618 1.6618 1.6743	0.0 168.80 316.62 443.91 551.45 639.85 710.17 763.54 800.72 821.94 827.15 816.07 788.27 743.30 681.77 765.93 515.73 515.73
0.900 0.950 1.000	967.272 967.272 942.569 906.485	967.271 942.569 906.485	0.8253 0.8280 0.8322 0.8385	0.8928 0.8955 0.8992 0.9045	0.81/0 0.8650 0.9242 1.0000	1.0231 1.0103 1.0025 1.0000	2.2433 2.4665 2.7217	410.94 290.45 153.44 0.0

Table XIV. Compound Constants for the Peng-Robinson Equation of State

compd	<i>T</i> _c , K	P _c , MPa	ω	
diethyl ether	466.7	3.637	0.2810	
acetone	508.100	4.700	0.3073	
acetonitrile	548.000	4.833	0.3210	
methanol	512.640	8.092	0.5643	

Table XV. Comparison of the Barker and Mixon et al. Pressure Fits

	max % de	ev in P ^a	rms for	% dev ^b					
temp,K	Barker	Mixon	Barker	Mixon					
Diethylether(1) + Acetone(2)									
298.06	0.052	0.042	0.023	0.020					
338.19	0.399	0.018	0.274	0.009					
388.30	0.551	0.133	0.318	0.058					
Die	Diethylether(1) + Acetonitrile(2)								
298.14	0.119	0.072	0.055	0.031					
338.16	0.147	0.095	0.093	0.044					
388.17	0.515	0.648	0.218	0.248					
Diethylether(1) + Methanol(2)									
298.16	0.072	0.083	0.032	0.035					
338.17	0.049	0.073	0.028	0.029					
388.15	0.454	0.198	0.190	0.110					
^a % dev =	= 100 Pcalo	d ^{-P} expt1	$/P_{expt1}$].	^b rms for					
% de v =	$= \int \Sigma^n (\% de$	$(v)^2/n^{\frac{1}{2}}$							

exhibited any degradation during experimental measurements; the cell pressures were stable with respect to time, and all liquids were perfectly clear when removed from the cell at the end of the last isotherm.

Experimental Data

The experimental *PTx* data measured for the three binaries is presented in Tables II–IV. The "smooth" pressure values reported are from the least-squares cubic splined fits used to interpolate the experimental *P* vs. x_1 values to provide the evenly spaced values required by the finite-difference Mixon et al. method (2). The experimental data are plotted in Figures 1–3 in terms of the deviation pressure P_D which is the deviation from Raoult's law

$$P_{\rm D} = P - \left[P_2' + x_1 (P_1' - P_2') \right]$$

where P is the experimental mixture pressure and the P_i' values

	Ac	Accuracy of P_fits, max % dev/rmsd		Calculated γ_i^{∞} values					
	P fits,			Component 1			Component 2		
Calculation method	298.16K	338.17K	388.15K	298.16K	338.17K	388.15K	298.16K	338.17K	388.15K
Mixon et al.	0.0/0.0	0.0/0.0	0.1/0.1	3.455	3.315	3.038	4.602	3.647	2.722
Barker:									
absolute Van Laar	1.3/0.6	0.7/0.4	0.4/0.2	3.291	3,174	2.967	4.323	3,600	2.738
Wilson	0.3/0.2	0.2/0.1	0.2/0.1	3.463	3,307	3.056	4.707	3,795	2.806
NRTL	0.4/0.2	0.1/0.0	0.3/0.1	3.538	3,353	3,004	4.766	3.839	2.748
modified Margules	0.2/0.0	0.1/0.0	1.9/1.0	3.491	3.353	3.626	4.901	3.829	3.493
UNIQUAC	1.1/0.6	0.6/0.3	0.3/0.1	3,302	3.187	2,984	4.402	3,642	2.755
Redlich-Kister, three constant	0.6/0.2	0.8/0.5	0.3/0.1	3.570	3.350	2,997	4.650	3.455	2.760
Redlich-Kister, five constant	0.0/0.0	0.0/0.0	0.4/0.2	3.450	3.303	2.961	4.830	3.771	2.730
Gautreaux-Coates:									
splined fits				3.453	3.314	3.038	4.588	3.643	2.720
P _D /x ₁ x ₂ plots				3.413	3.286	2,979	4.518	3.589	2.672

Table XVI. Effect of the Calculation Method on γ_i° for the Diethyl Ether (1) + Methanol (2) System. Peng-Robinson Equation of State Used

are the pure component vapor pressures.

All the three binaries exhibited positive deviations from Raoult's law at all the three temperatures. The diethyl ether + acetonitrile system did not form any azeotropes. The diethyl ether + acetone system formed azeotropes at 338 and 388 K. The diethyl ether + methanol system formed azeotropes at all the three temperatures studied.

Reduced Data

The y_i , γ_i , and G^E values are reported in Tables V-XIII. Those values were obtained with the Mixon et al. data reduction method, using the Peng-Robinson equation of state (3) to estimate the vapor-phase fugacity coefficients. The "experimental" pressure values tabulated in Tables V-XIII are actually interpolated values from the cubic splined fits of the experimental P vs. x_1 values. The calculated pressure values are from the Mixon et al. data reduction and show how well that method reproduces the original pressure data.

The calculated activity coefficient curves are shown in Figures 4-6 for both the Mixon et al. and the Barker (4) data reduction methods. A five-constant Redlich-Kister equation for G^{E} was used for the Barker calculations for all the three binaries. The points in the plots are the evenly spaced Mixon et al. values while the curves represent the Barker method results. The Peng-Robinson equation of state was used for both the Mixon et al. and Barker methods. Table XIV lists the compound constants used for the Peng-Robinson equation. The binary interaction constant was set to 0.0 for all three binaries. The three systems covered in this paper are all well behaved-no mixed deviations----and the level of nonideality changes monotonically with temperature in all cases. As a result, the disagreements between different data reduction procedures are not as sharp as for less well-behaved systems.

Table XV compares the two data reduction methods in terms of accuracy of the P fits. The maximum percent deviation and the root-mean-squared deviation are defined at the bottom of the table. As can be seen from the table, both methods work well for the three systems covered in this paper. However, the Mixon et al. method performed better than the Barker method for six of the nine sets of data. Table XVI further compares the two data reduction methods in terms of the infinite dilution activity coefficients obtained for the diethyl ether + methanol system. Table XVI also shows the values obtained using the Gautreaux-Coates equations (5) when the $(dP/dx_1)^{\infty}$ values needed by those equations come from the cubic splined fits or from the $P_{\rm D}/x_1x_2$ or $x_1x_2/P_{\rm D}$ plots. The estimation of γ_1 values from the plots has been discussed before ($\boldsymbol{\theta}$). Since the systems are well-behaved, the values obtained by various correlations with the Barker method and by the Gautreaux-Coates method generally agree fairly well with the results of the Mixon et al. method.

Registry No. Acetone, 67-64-1; diethyl ether, 60-29-7; acetonitrile, 75-05-8; methanol, 67-56-1.

Literature Cited

- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data **1979**, 24, 16.
 Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. **1965**, 4, 455.
- (3) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15, 59.
- Barker, J. A. Aust. J. Chem. 1953, 6, 207. (4)
- Gautreaux, M. F.; Coates, J. AIChE J. 1955, 1, 496. (6) Maher, P. J.; Smith, B. D. Ind. Eng. Chem. Fundam. 1979, 18, 354.

Received for review February 19, 1985. Accepted May 7, 1985. The financial support received from the National Science Foundation Grant CPE-8201579 and from the Industrial Participants in the Thermodynamics Research Laboratory is gratefully acknowledged.